AN APPROXIMATE SOLUTION OF THE BOUNDARY
LAYER EQUATIONS WITH BLOWING PRESENT

A. M. Golovin and E. D. Sergievskii UDC 532.517.2

It is shown that the linearized equation of motion of a fluid flowing past a wedge with vertex
angle 7/2 and 7, employed with blowing present over the whole boundary layer region, leads
to results which agree well with those obtained earlier by a numerical method, The con-
centration and temperature fields are investigated for large and small Schmidt and Prandtl
numbers,

The stationary two-dimengional flow of an incompressible material over a permeable surface with
uniform blowing or suction present may be described by a system of laminar boundary layer equations,

which, with constant physical properties and omitting energy dissipation and the work of the pressure forces,
assume the following form [1, 2}:
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where x is the distance along the surface from a forward critical point of the body; y is the distance along
the normal; u, v are the longitudinal and transverse components of the velocity, respectively; U is the speed
at the exterior edge of the boundary layer; ¢ is the concentration of the material blown in, defined as the
ratio of the density of the material blown in to the density of the mixture; D is the diffusion coefficient of
the binary mixture; T, p, %, cp, and v are, respectively, the temperature, density, thermal conductivity,
heat capacity, and viscosity of the mixture,

The system of equations (1) is supplemented by the following boundary conditions:

1 =0, v=u, ¢=¢, T=T,fry=0;
u 14 o~ - g (2)

u=U, ¢=¢Cu, T =T« for g—oco.

In the sequel we denote all quantities, which relate to the surface, with a subscript w, and quantities
applicable to the domain far from the surface will be denoted with subscript «,

The concentration cy, and the blowing velocity vy, are connected through a relation which indicates
the absence of the normal component of the main stream of the fluid at the surface:

P (6—0 )
1—c, \ 0y /w

The temperature of the surface Ty, subject to the condition that all the heat incident on the wall goes
toward heating the blowing fluid to this temperature, is connected with the speed of blowing by the relation
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Fig.1l, Distribution of the Here L is a characteristic scale of length,

stream function obtained for
A =1 (continuous curves)

and A = 0.5 (dashed curves):
Curve 1: fy = 0, points de-
note numerical results from

Further, we consider flows in which £, C, and § depend only on the
variable 7, In this case the speed at the oufer edge of the boundary layer
varies in the following way: U(x) ~ x™ (m = const), Such flows are real-
ized for flow past a wedge of vertex angle wA.,

[11; 2: fy = —1; 3: £, =—2.03; The system of equations (1) then assumes the form:
4: £, =~3.19, . o )
df —l—f f TAlI— ﬂc_) =0, (A: om ‘)’
. dn m-1
&C | v 5
L ST -0 [Se=—), ®)
o of dn ( ‘D )
a0 o voc j
Prf —=0 Pr=_*221,
dn? i dn ( ' ®

The boundary conditions (2) transform in the new variables to

[ df 0 Wy
ALY —o, f=— Tl X NP 0 0,6,=0 for n=0;
\an ) Fa {<m+1)v] w =D

N

(——d—f—) =1, Co=1, Bg=1 for %> co.
dn /e .

The system of equations (5) with the boundary conditions (6) was solved numerically in [5-7]. The
asymptotic solutions of this system, assuming blowing tending to infinity, were obtained in [3, 8~10]. We
investigate below an approximate solution of the linearized system of boundary layer equations with blowing
present,

1, When 1 > 1, as a consequence of the boundary condition (6) the stream function is equal to f =17
— A, where A is an arbitrary constant, We seek a solution of the first of Eqgs. (5) in the form

[=f+hi (o=n—4).

If |f;] < |n —2[, then following [6, 7], we may linearize this equation:

Th fm—n-Z_onth o a)
dn? dn? dn

Equation (7) describes the flow rather precisely for large values of n. However the condition |f;| « Ig
—A| is not satisfied for n < A. Actually, Eq. (7) applies when the quadratic terms, neglected on the right side
of the equations, are small, Further we shall show that when A = 0,5 and A = 1 a partial mutual compensa-
tion of the nonlinear terms takes place, Hence when A = 0.5 and A =1 the solution of the linearized Eq, (7),
satisfying the boundary conditions (8), turns out to be suitable for describing the velocity field in the bound-
ary layer domain also,
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Fig.2. Longitudinal velocity distribution obtained by the method of
this paper for (a) A =1 and (b) A = 0,5, Points plotted in Fig.2a
correspond to calculations from [5]; those plotted in Fig,2b corre-
spond to calculations from [6], Curves 1, 2, 3, 4 correspond, re-
spectively, to fy, values of 0, -1, —2,03, —3.19,

A solution of Eq. (7), satisfying the condition df,/dn— 0 for n —, may be expressed in terms of a
parabolic cylinder function [11], an integral representation for which allows us to write the stream function
in the form

@ ®

Fen—n+ AnL 5 y—2™ exp (— _y2__) dydz, ®

where
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The boundary condition £(0) = fy, enables us to find the constant A

-] @ , 5
o4 h—A E j (y—z)mexp(———yT> dyde. ©)
—h z
From the solution (8) it follows that
-
F=lot 5 for n<i, (10)
where .
2 0 2
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F'x+1)= g't"exp(—~t)dt.
0o

The expressions obtained simplify substantially for a large blowing speed (A > 1), Tn this case the
stream function (8) assumes the form

2 g n 24+l
=N —A7 11— for A—n»1,
f=mn +2A+1( A) or n>» (12)

f=n—% fo& n—AD>L (18)
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concentration according to formula
26) for A =1 (Sc = 0,7): curves 1,
2, 3, 4 correspond to fy -values 0,
-1, -2,03, -3,19, respectively;

the points plotted refer to the nu-
merical calculations from {5],

where

Here A is determined from the equation
(2A 4+ 1) f, = — 2AA. (14)

It is evident from this that the variation of the longitudinal
component of the speed with distance along the normal has a point
of inflection, for large blowing speeds, in the region n~A\ for wedge
angles A < 0.5, which is evidently indicative of instability [1, 2].

It should be noted that for the case corresponding to A =1
the Navier —Stokes equations, describing the plane-parallel flow
close to the forward critical point of a ecylindrical body, reduce
to the first of Egs. (5). We give below the results of our calcula-
tions of the velocity field for this case A =1, and also for the case
of flow past a wedge with a right angle at its vertex (A = 0.5),

For the case A =1

fzn‘—’”rl‘h{%[l + —;—(n—W] exp[-——;—(n—m]

——;-v’% =ML+ D (h—n) ———é—V?‘n‘(n—msn +¢’(7~—n)l},(15)
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The quantity A is determined from Eq, (9), which assumes the form

VBRI + S W+ —— VIR + SN+, + (—;—m—%wn,) exp (——;— V) 0. (7
Similar expressions are obtained for the case A = 0,5:
F=n—ht A VIR + @ — Il (=W — exp[——;—(n—h)?]}, (18)
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where
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A

The equation for determining A is
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The values of the stream function (see Fig, 1) were calculated from formulas (15) (continuous curves)
and (18) (dashed curves). The points plotted in the figure indicate results from previous calculations [1],
made for the case without blowing, Values of the longitudinal components of velocity, calculated from for-
mulas (16) and (19), are given in Fig.2, The points plotted there denote the results of numerical calculations,
for the same blowing quantities, using the data of [5] for A = 1 and the data of [6] for A = 0.5, Agreement
with the results of the numerical calculations is satisfactory. The maximum error does not exceed 10-15%
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for the blowing range considered. The quantity A, defined by Egs. (17) and (20), enables us to calculate the
displacement thickness (see [2]), equal to

o =11/ A —r. (21)

The divergence of the results obtained in calculating A [2] from those obtained in this paper without
blowing amount to 1% for A = 1 and 3.7% for A = 0.5.

The domain of applicability of Eq, (7) is determined by the following inequality:

dzf;

max { m— A)

, QA} dfy

dy }>>

(22)

The correction to the stream function f; turns out to be monotonic for A = 0.5, The maximum error
occurs at n = 0, In this case, to satisfy inequality (22) it is sufficient to require that

max{!lh( Z:Z )w |

Using the results of the numerical calculation it may be verified that for the case A =1 and 0.5 this
inequality, in the absence of blowing, is satisfied with an error not exceeding 25%. From inequality 23) it
follows that the linearized equation is not applicable for describing the velocity field in the region of the
boundary layer on a flat plate (A = 0).

(23)

, 2A}>>

(Foo +7»)( i ) — Al

For large blowing, as a consequence of formulas (12) and (14), the inequality (22) means that
AN+ 23 2A —1. (24)
From this it is evident that with large blowing the error of the solution may be noticeable if A is not

equal to 0.5,

2, The diffusion equation in the system of Egs. (5) is analogous to the energy equation; therefore, in
the sequel, we consider the diffusion equation only. The solution of this equation with the boundary condi-
tions (6) has the form

I

,C=B§‘exp(‘——503' f(ydn ) dn’,
; _

where
A v
- - j exp Scj Fonan ) (25)
0
In accord with Eqs. (25) and (8) the concentration profile increases monotonically from 0 to 1 as 7
increases and has an inflection point for n = n* (f(*) = 0), corresponding to a maximum value for (dC/dn).

With moderate and with large blowing (fy, > 1) it may be assumed that n*~A. In this case the diffusion
boundary layer is situated in a region including 7 = A with an effective thickness of order Sc~!/?

For the case of small blowing (f,, « 1) the diffusion boundary layer is situated close to the surface.
The effective thickness of the diffusion boundary layer turns out to be on the order of Sc1/3,

IfAvSc > 1, fy, >» 1, it is then obvious that in calculating the integral in the exponent of Eq, 25) in the
region vSe|n —A| = 1, we can replace the stream function (8) by f = 7 —2, i.e., we can consider it in the
potential flow approximation with the displacement thickness taken into account,

The following expression is obtained for the concentration distribution in this case:
C =B, (P (1VS)— @1 —n Ve,
where

% =149 4 VSc). (26)
1



Formula (26) satisfactorily describes the concentration field in the maximum diffusional flow region
(n = M), but proves to be unsuitable for calculating the diffusional flow at the wall. To calculate the latter
one can use formula (12).

Thus we obtain

ac \ /" Se el CA+HECA+D
(d—n) 8 7 2—;‘*""{ Scf’”[ IAEA+D) ]} @)

Formula (27) coincides with that obtained in [3] with wedge angle A = 0,5, and when A = 1, the exponent

in Eq. 27) differs from that in [3] by 25%. The diffusional flow at the wall tends to zero asymptotically with
an increase in blowing,

In the case of small Schmidt humbers (A vSc « 1), the concentration field is also describable by for--
mula (26), which enables us to calculate the diffusional flow:

dc l/ Sc ( Sc A )
bt =928 — .
( dn )w ! 2n P 2 (28)

For large Schmidt numbers and small blowing, formula (10) may be used throughout the diffusional
boundary layer region, The relative concentration (25) has the form

n 2
C=Bz§ eXP[—Scn’ (fw+ il )]dn'.
4]

6

where

,2

- 5 exp [_ Sen’ (fw+ ‘Lﬁ)] dn', (29)

2

In calculating the integral in formula (29) the main contribution to the exponent occurs in the domain
e~ Sc'1/3, therefore when the condition (6/(1)1/3fW x 8c¥/? « 1 is satisfied, we can limit ourselves to the
linear term in the expansion of exp(-Scfyn).

Thus we obtain the following expression for the relative concentration

c=a (4. S0 o ) Hy (2, )], ®

where

=[]

Yo, 1= Yexp(——-t) 7,
H

For fy, — 0 formula (30) coincides with the expression obtained in [3].
Calculations were made using formula (26) with Schmidt number Sc = 0,7 for the case A =1 (Fig. 3).

The plotted points correspond to the numerical results obtained in [5] with the same blowing values.
Deviation from the numerical results does not exceed 10-15%.

In concluding, the author thanks V.G, Levich for discussing the results of the paper.
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