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It is shown that the l inea r i zed  equation of motion of a fluid flowing pas t  a wedge with ve r t ex  
angle 7r/2 and zr, employed with blowing p re sen t  over  the whole boundary l aye r  region,  leads 
to r e su l t s  which ag ree  well  with those obtained ea r l i e r  by a numer ica l  method.  The con-  
cent ra t ion  and t e m p e r a t u r e  f ields a r e  invest igated for  l a rge  and smal l  Schmidt and Prandt l  
n u m b e r s .  

The s t a t ionary  two-dimens ional  flow of an incompress ib l e  m a t e r i a l  ove r  a p e r m e a b l e  su r face  with 
un i fo rm blowing or  suction p r e s en t  may be descr ibed  by a s y s t e m  of l amina r  boundary l ayer  equations,  
which, with constant  physica l  p r o p e r t i e s  and omit t ing energy diss ipat ion and the work  of the p r e s s u r e  fo rces ,  
a s s u m e  the following f o r m  [1, 2]: 

cgu Ou dU a2u 
u + v ~ = U  + v - - ,  

0x @ dx Oy ~ 

au av 
Ox + - ~ g  = O, (1) 

9u ac + p v  Oc = D  O~__f_ c 
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where  x is the d is tance  along the su r f ace  f r o m  a forward  cr i t ica l  point of the body; y is the dis tance along 
the normal ;  u, v a r e  the longitudinal and t r a n s v e r s e  components  of the veloci ty,  r e spec t ive ly ;  U is the speed 
at the ex te r io r  edge of the boundary layer ;  c is the concentra t ion of the ma te r i a l  blown in, defined as the 
ra t io  of the density of the m a t e r i a l  blown in to the densi ty of the mixture ;  D is the diffusion coeff icient  of 
the b inary  mixture ;  T, p, ~ ,  Cp, and v a re ,  r e spec t ive ly ,  the t empera tu re ,  densi ty,  t he rma l  conductivity,  
heat  capaci ty ,  and v i scos i ty  of the mix ture .  

The s y s t e m  of equations (1) is supplemented by the following boundary conditions: 

u = 0 ,  v = v~,, c = c~,, T = T~, for y = O; (2) 

u = U, c =  c . ,  T = T .  for g - -*~ .  

ha the sequel we denote all  quanti t ies,  which r e l a t e  to the sur face ,  with a subsc r ip t  w, and quantit ies 
appl icable  to the domain fa r  f r o m  the su r face  will be  denoted with subsc r ip t  ~.  

The concentra t ion c w and the blowing veloci ty  v w a re  connected through a re la t ion  which indicates 
the absence  of the no rma l  component  of the main s t r e a m  of the fluid at the sur face :  

Vw 1 - - c ~  w 

The t e m p e r a t u r e  of the su r f ace  Tw, subject  to the condition tl{at all the heat  incident on the wall  goes 
toward heat ing the blowing fluid to this t e m p e r a t u r e ,  is connected with the speed of blowing by the re la t ion  
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Fig. 1. Distribution of the 
s t r eam function obtained for  
A = 1 (continuous curves) 
and A = 0.5 (dashed curves):  
Curve 1: fw =.0, points de-  
note numerical  resul ts  f rom 
[1]; 2: fw = - 1 ;  3: fw = - 2 . 0 3 ;  
4: fw = - 3 . 1 9 .  

v~ ---- pep (Tw-- To) ~ '  (4) 

where T o is the tempera ture  of the inner surface of the porous wall. 

Following [3, 4] we introduce new variables  ~ and 7, a s t r eam func- 
tion r a dimensionless concentrat ion C, and a dimensionless t empera -  
ture 0 

- U (x) dx ,  n = 

0 

1 

C - cw - . c  0 = 
C w - -  Cao 

Here L is a charac ter i s t ic  scale  of length. 

1 

U , L  \ 2~ ] ' R e =  ~, , 

a ~  v - - - -  
Og 

T - -  Tw 

Ox ' 

Further ,  we consider flows in which f, C, and 0 depend only on the 
variable 7. In this ease the speed at the outer edge of the boundary layer  
var ies  in the following way: U(x) ~ x m (m = const). Such flows a re  r e a l -  
ized for flow past  a wedge of vertex angle 7rA. 

The sys tem of equations (1) then assumes  the form:  

d~l 3 �9 ~ --0,  A = - - m + l  ' 

d*C + S c f  dC = 0  (Sc~_ v ) 
d~l 2 d~l D ' 

( d~-~O + P r [  .dO = 0  P r ~  . 
dq 2 dq 

(s) 

The boundary conditions (2) t r ans fo rm in the new var iables  to 

1 

(6) 

The sys tem of equations (5) with the boundary conditions (6) was solved numerical ly  in [5-7]. The 
asymptotic solutions of this sys tem,  assuming blowing tending to infinity, were  obtained in [3, 8-10]. We 
investigate below an approximate solution of the l inearized sys tem of boundary layer  equations with blowing 
present .  

1. When 7 >> 1, as a consequence of the boundary condition (6) the s t r eam function is equal to f = 7 
- X, where it is an a rb i t r a ry  constant.  We seek a solution of the f i rs t  of Eqs. (5) in the form 

f = f 0 + 5  (h = 7 - -  Z). 

if Ifll << ]7 -Xl ,  then following [6, 7], we may l inearize this equation: 

d3j-L + (~ - -  X) d~h - -  2A d [ L  = 0. (7) 
d~l 3 d~l 2 d~l 

Equation (7) descr ibes  the flow ra ther  precise ly  for large values of 7. However the condition Ifll << 17 
- i t ]  is not satisfied for 7 < it. Actually, Eq. (7) applies when the quadratic t e rms ,  neglected on the r ight side 
of the equations, a re  small .  Fur ther  we shall show that when A = 0.5 and A = 1 a part ial  mutual compensa-  
tion of the nonlinear te rms  takes place. Hence when A = 0.5 and A = 1 the solution of the l inearized Eq. (7), 
satisfying the boundary conditions (6), turns out to be suitable for describing the velocity field in the bound- 
a ry  layer  domain also. 
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Fig .  2. Longi tudinal  ve loc i ty  d i s t r ibu t ion  obtained by the method of 
this pape r  f o r  (a) A = 1 and (b) A = 0.5. Poin ts  plot ted in Fig.  2a 
c o r r e s p o n d  to ca lcu la t ions  f r o m  [5]; those  plot ted in F ig .2b  c o r r e -  
spond to ca lcu la t ions  f r o m  [6]. Curves  1, 2, 3, 4 c o r r e s p o n d ,  r e -  
spec t ive ly ,  to fw va lues  of  0, - 1 ,  - 2 . 0 3 ,  - 3 . 1 9 .  

A solut ion of Eq. (7), s a t i s fy ing  the condit ion dfl/d~?--* 0 for  ~?-* ~, may  be e x p r e s s e d  in t e r m s  of a 
pa rabo l i c  cy l inder  funct ion [11], an in teg ra l  r e p r e s e n t a t i o n  for  which al lows us to wr i t e  the s t r e a m  function 
in the f o r m  

~l--lk z 

w h e r e  

1 
(9 § )~)2A exp dg. 

A 

The boundary  condi t ion f(0) = fw enables  us to find the cons tan t  )t 

f~q-~,=A ; i (9--z)2Aexp(-- Y-~-; ) dgdz" 

F r o m  the solut ion (8) it fol lows that 

w h e r e  

a l l  ~- 
f = f w + - - -  Z for n<<~,, 

a~ 

a = \ dq ~ ] 

f = ~ - - ; ~ + A  r ( l+2A)  [ (n--k)' ] fo, nb;~, 
(q __ ~)2A+2 exp 2 " 

(9) 

(10) 

(n) 

w h e r e  

F (x q- 1) : I t  * exp ( -- t) dr. 
0 

The exp re s s i ons  obtained s impl i fy  subs tan t i a l ly  for  a l a r g e  blowing speed  ()~ >> 1). 
s t r e a m  funct ion (8) a s s u m e s  the f o r m  

1 - -  for ~, - -  TI )) 1 f=n-~'+ 2 A + 1  

In this ca se  the 

(12) 

(13) 
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Fig. 3. Distribution of the re la t ive  
concentrat ion according to formula  
(26) for  A = 1 (Sc = 0.7): curves  1, 
2, 3, 4 cor respond to fw-values 0, 
- 1 ,  - 2 . 0 3 , - 3 . 1 9 ,  respect ively;  
the points plotted r e f e r  to the nu-  
mer ica l  calculations f rom [5]. 

where  

Here  )~ is determined f rom the equation 

(2A --k 1) fw = --  2Ak. (14) 

It is evident f rom this that the var ia t ion of the longitudinal 
component of the speed with distance along the normal  has a point 
of inflection, for  large  blowing speeds,  in the region V ~ X for wedge 
angles A < 0.5, which is evidently indicative of instability [1, 2]. 

It should be noted that for  the case  corresponding to A = 1 
the Nav ie r -S tokes  equations, describing the p lane-para l le l  flow 
close to the forward cr i t ica l  point of a cyl indr ical  body, reduce 
to the f i r s t  of Eqs. (5). We give below the resu l t s  of our calcula-  
tions of the veloci ty field for  this case A = 1, and also for  the case  
of flow past a wedge with a r ight angle at its ver tex  (A = 0.5). 

For  the case A : 1 

- -  A 2 1 1  1 _ ~,)2] 

1 V~-  ~ (n - -  ~,)[1 § ,0 (~, - -  n)] - -  + ]/'2~ 01 - -  ~)3 [1 -}- ~ (~, - -  ~l)]}, (15) 
2 

-dr = l d ~ l  --A1 {-~- V~ [1-k r ()~--~1)1 [1 q - 0 q -  ~)~1- (~t -  ~)exp [ 01--2 ~)* ] }  ' (16) 

___L__I = 1 V - ~ t l + , p ( ~ ) l ( l + X 2 ) q _ ~ , e x p (  - I ~=) 
A 1 2 2 ' 

x 

- ~  exp - -  dt. 

0 

The quantity X is de termined f rom Eq. (9), which assumes  the form 

1 V-~-~[l_t_r 3 3 +~.fw exp - -  ~) = 0 .  3 
Similar  express ions  a re  obtained for the case  A = 0.5: 

( [ +  ]} f = ~l--:~ q-- A2 -~1 ~/:2-~ [I --}- r (~,--~l)][l -k (~l-- X)~]----~ - exp - -  Ol--~,) ~. 

07) 

(18) 

where  

= A { 1 V-2-~ i l+r  + 0 1 - - ~ ) ~ ] }  df 1 - -  ~ 
dn T 

A, 2 ~, 2 ! 

The equation for  determining X is 

d 2n 
4 [1 + (P (~,)1 (1 _ ~ 2 )  

(19) 

[1 + r (~.)l ~.fw - -  -2-  + fw exp - -  = 0. (20) 

The values of the s t r e a m  function (see Fig. i) were  calculated f rom formulas  (15) (continuous curves)  
and (18) (dashed curves) .  The points plotted in the figure indicate resu l t s  f rom previous calculations [1], 
made for  the case  without blowing. Values of the longitudinal components of velocity,  calculated f rom fo r -  
mulas (16) and (19), a re  given in Fig. 2. The points plotted there  denote the resu l t s  of numer ica l  calculations,  
for  the same blowing quantities,  using the data of [5] for  A = 1 and the data of [6] for  A = 0.5. Agreement  
with the resu l t s  of the numer ica l  calculations is sa t i s fac tory .  The maximum e r r o r  does not exceed 10-15% 
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for  the blowing range  cons idered .  The quantity ~, defined by Eqs.  (17) and (20), enables us to calcula te  the 
d i sp lacement  thickness  (see [2]), equal to 

V ,x (21) 
5"=~ ,  A m--U-' 

The d ivergence  of the r e s u l t s  obtained in calculat ing X [2] f r o m  those obtained in this pape r  without 
blowing amount to 1% for  A = 1 and 3.7% for  A = 0.5. 

The domain of applicabi l i ty  of Eq. {7) is de te rmined  by the following inequality: 

d~l ~ ' dn ]>> f ' - - A  . (22) ( dn ~ ~ dn ] I 

The co r rec t ion  to the s t r e a m  hmction fl turns out to be monotonic for  A _> 0.5. The m a x i m u m  e r r o r  
occurs  at 77 = 0. In this case ,  to sa t i s fy  inequality (22) it is sufficient to r equ i r e  that 

max{l~,( d=' , 2A} ~,)( d~f I - - A  . (23) 

Using the r e s u l t s  of the numer i ca l  calculat ion it may be ver i f i ed  that for  the case  A = 1 and 0.5 this 
inequality, in the absence  of blowing, is sa t i s f ied  with an e r r o r  not exceeding 25%. F r o m  inequality (23) it 
follows that the l inear ized  equation is not appl icable  for  descr ib ing  the veloci ty  field in the region of the 
boundary l ayer  on a f lat  p la te  (A = 0). 

For  l a rge  blowing, as a consequence of fo rmulas  (12) and (14), the inequality (22) means  that 

4A + 2 >> 2A - -  1. (24) 

F r o m  this it is evident that with l a rge  blowing the e r r o r  of the solution may be not iceable if A is not 
equal Lo 0.5. 

2. The diffusion equation in the s y s t e m  of Eqs.  (5) is analogous to the energy equation; the re fore ,  in 
the seque l ,we  cons ider  the diffusion equation only. The solution of this equation with the boundary condi-  
tions (6) has the f o r m  

~l ~l ~ 

0 v 

where  

- - = B  j e x p  ( - - S c  f(~)&l )d~l'. 
0 o 

(25) 

In accord  with Eqs.  (25) and (8) the concentra t ion prof i le  i nc reases  monotonical ly f r o m  0 to 1 as ~? 
i n c r e a s e s  and has  an inflection point for  ~? = 7"  (f0?*) = 0), co r responding  to a m a x i m u m  value for  (dC/dv). 

With mode ra t e  and with l a rge  blowing (fw > 1) it may be a s sumed  that V* ~), .  In this case  the diffusion 
boundary l aye r  is s i tuated in a reg ion  including ~? = k with an effect ive thickness of o rde r  Sc-1/2. 

For  the case  of smal l  blowing (fw << 1) the diffusion boundary l ayer  is s i tuated c lose  to the su r face .  
The effect ive thickness of the diffusion boundary l ayer  turns out to be  on the o rde r  of Sc-i /3.  

If )t4-Sc >> 1, fw >> 1, it is then obvious that in calculat ing the in tegral  in the exponent of Eq. (25) in the 
region 4-Scl77 - ) t [  -< 1, we can r ep l ace  the s t r e a m  function (8) by f = V - X ,  i .e. ,  we can consider  it in the 
potential  flow approximat ion  with the d i sp lacement  thickness  taken into account.  

The following express ion  is obtained for  the concentra t ion dis t r ibut ion in this case:  

where  
c = B, { r (~, d E )  - -  ,~ [(~, - -  n) V ~ I } ,  

! = 1 + 4, (~ V~).  (26) 
B1 
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Formula  (26) sa t i s fac tor i ly  desc r ibes  the concentrat ion field in the m a x i m u m  diffusional flow region 
07 ~ X), but p roves  to be unsui table  for  calculat ing the diffusional flow at the wall .  To calcula te  the l a t t e r  
one can use  fo rmula  02) .  

Thus we obtain 

d ~ -  w ~ -  exp - -  Sc 1w 4A (2A q- 2) . �9 (27) 

Formula  (27) coincides with that obtained in [3] with wedge angle A = 0.5, and when A = 1, the exponent 
in Eq. (27) differs  f rom that in [3] by 25%. The diffusional flow at the wall  tends to zero  asymptot ieaUy with 
an inc rease  in blowing. 

In the ease  of smal l  Schmidt number s  ()t ,/-So << 1), the concentrat ion field is also desc r ibab le  by f o r -  
mula (26), which enables us to ealcula te  the diffusional flow: 

( @ )  = 2 B 1 V  Sc / Sc~'~' exp (2s) 

For la rge  Schmidt numbers  and sma l l  blowing, fo rmula  0-0) may be used throughout the diffusional 
boundary layer  region.  The re la t ive  concentrat ion (25) has the fo rm 

0 

where  

i [  ( 1[_ = exp - -  Scn' fw -t- dn'. (29) 
B~ 

0 

In calculat ing the integral  in fo rmula  (29) the main contribution to the exponent occurs  in the domain 
~1 ~ Sc-1/~, the re fo re  when the condition ( 6 / a ) t / 3 f  w x Sc~/3 << 1 is sa t is f ied,  we can l imit  ourse lves  to the 
l inear  t e r m  in the expansion of exp( -Sc  fwV). 

Thus we obtain the following express ion  for  the re la t ive  concentra t ion 

c 

where  

1 �9 Sca ~-  ~-F ( 2 ~  B~ =[r(1)--(Sefw)( 6 ] ,3]] ;  
x 

7 (a, x ) =  .f exp ( - -  t) t ~ - '  dr. 
0 

For  fw "* 0 fo rmula  (30) coincides with the express ion  obtained in [3]. 

Calculations were  made us ing  fo rmula  (26) with Schmidt number  Sc = 0.7 for  the case  A = 1 (Fig. 3). 

The plotted points co r respond  to the numer ica l  r e su l t s  obtained in [5] with the s ame  blowing va lues .  
Deviation f r o m  the numer ica l  r e su l t s  does not exceed 10-15%. 

In concluding, the author thanks V.G.  Levich for  d iscuss ing the r e su l t s  of the paper .  
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